

MnO₂

- ➤ Useful, mild reagent for the oxidation of 1° and 2° alcohols to carbonyl compounds
- Highly specific oxidant for allylic and benzylic hydroxy groups.

Reaction, under mild conditions (rt) in neutral solvent (e.g. water, Petroleum,

acetone, DMF, DCM or CHCl₃)

$$\begin{array}{c|c} & & & & \\ \hline O & & & \\ \hline O & & \\ \hline O & & \\ \hline O & \\ \hline O$$

Oppenauer Oxidation

[1937]

© 2017 Roman A. Valiulin

Meerwein-Ponndorf-Verley Reduction

119241

© 2017 Roman A. Valiulin

Birch Reduction

[1944]

$$M$$
 (Na, Li)
 $NH_3 (I)$
 M^{\oplus}
 $+$
 $e^{\ominus} \equiv NH_3 \bullet e^{\ominus}$
 $(solvated electron)$

$$\begin{array}{c|c}
\hline
 & (Na, Li) \\
\hline
 & NH_3 (I)
\end{array}$$

$$\begin{array}{c|c}
\hline
 & (Na, Li) \\
\hline
 & NH_3 (I)
\end{array}$$

© 2017 Roman A. Valiulin